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This paper considers the dynamics of a thin film of viscous liquid of density ρ coating
the underside of a horizontal rigid boundary under the action of surface tension
σ and gravity g, and in the lubrication limit. Gravitational instability for inverse
wavenumbers larger than the capillary length � = (σ/ρg)1/2 leads to the formation of
quasi-static pendent drops of radius ≈3.83�. If the boundary conditions are such as
to pin the positions of the drops then the drops slowly drain fluid from the regions
between them through thin annular trenches around each drop. A similarity solution is
derived and verified numerically in which the film thickness in the intervening regions
scales like t−1/4 and that in the trenches like t−1/2. A single drop placed far from
boundaries on an otherwise uniform film, and given an initial perturbation, undergoes
self-induced quasi-steady translation during which it grows slowly in amplitude by
leaving a wake where the film thickness is reduced by an average of 90 %. It is driven
by release of gravitational potential energy as fluid is collected from the film into the
lower lying drop. Analysis of Landau–Levich regions around the perimeter of the
translating drop predicts its speed and the profile of the wake. Two translating drops
may coalesce if they collide, in contrast with the non-coalescence of colliding collars in
the analogous one-dimensional problem (Lister et al., J. Fluid Mech. vol. 552, 2006b,
p. 311). Colliding drops may also bounce off each other, the outcome depending
on the angle of incidence through complex interactions between their surrounding
capillary wave fields.

1. Introduction
As sometimes observed on a kitchen or bathroom ceiling, a layer of liquid coating

the underside of a rigid horizontal boundary is unstable and tends to accumulate into
an array of pendent drops. If the initial layer is sufficiently thin then these drops do
not drip off the ceiling, but remain supported in a near-equilibrium between surface
tension and gravity. In this paper, we examine the nonlinear dynamics that govern
the slow evolution and motion of such pendent drops, as they continue to accumulate
fluid from the surrounding remnant thin film of liquid. A surprising result is that a
single drop is capable of steady translation over an otherwise uniform horizontal film.
In addition, we find that a colliding pair of translating drops may coalesce or may
‘bounce’ off each other, depending on the initial conditions. The nonlinear dynamics
of pendent drops with two horizontal dimensions is significantly different from that
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found in the equivalent theoretical problem with one horizontal dimension (Lister
et al. 2006a, b).

The initial instability of a layer of liquid to form drops is an example of Rayleigh–
Taylor instability, which applies to any system where dense fluid overlies light. Linear
stability analyses for a number of systems with two semi-infinite superposed layers
are outlined in Chandrasekhar (1981, Chapter X). Many experimental and theoretical
investigations of Rayleigh–Taylor instability for a finite-thickness, very viscous layer,
without surface tension, have been motivated by geophysical applications (e.g.
Nettleton 1934; Selig 1965; Whitehead & Luther 1975; Lister & Kerr 1989). The
hexagonal planform observed in the nonlinear regime (e.g. Whitehead & Luther 1975)
is relevant, for example, to geological formations of salt domes, which can trap oil
and gas.

Linear stability analyses for the Rayleigh–Taylor instability of a finite-thickness
viscous layer with surface tension, which is the system considered here, are discussed
in some detail by Hynes (1978), Yiantsios & Higgins (1989) and Limat (1993).
Independent of the initial layer depth ĥ and the fluid-dynamic regime, a layer with
surface tension is unstable to wavelengths greater than 2π�, where � = (σ/�ρg)1/2

is the capillary length, and σ is the surface tension and �ρ the (unstable) density
difference across the interface between the layer and its environment.

Several studies of the weakly nonlinear development of the instability have focused
on pattern formation in two horizontal dimensions. As in the case without surface
tension, it is observed experimentally (Hynes 1978; Fermigier et al. 1992) that the
preferred pattern of drops is hexagonal. Fermigier et al. (1992) show that this is
the usual consequence of the lack of vertical symmetry – the rigid boundary above
and free surface below – which leads to quadratic interaction terms in the weakly
nonlinear amplitude equations for three perturbations at 120◦ to each other. Similar
analysis can also be used with the Fourier decomposition of Bessel functions to explain
the growth of axisymmetric disturbances around a point defect such as a speck of
dust. Limat et al. (1992) and Fermigier et al. (1992) also examined experimentally
the propagation of ‘roll fronts’ away from an edge of the fluid layer, or from a
fine triggering wire, and the subsequent breakup of these fronts into a hexagonal
pattern.

Studies of the long-term nonlinear evolution have largely been confined to just one
horizontal dimension, with a domain of length L > π� so that there is room for the
linear instability to develop. Yiantsios & Higgins (1989) and Newhouse & Pozrikidis
(1990) present numerical calculations for the case in which ĥ/� is sufficiently large
that, as the drops form, they accumulate a greater volume than the maximum possible
in a pendent drop and begin dripping. If ĥ � � then the liquid does not drip, but
accumulates into a number of equilibrium drops of length 2π�, separated by regions
where the film thickness tends towards zero. The number and location of drops
(or half-drops at the end of the domain) depends on L and the initial conditions
(Yiantsios & Higgins 1989).

The nonlinear evolution for ĥ � � can be described by lubrication theory, which
yields a leading-order evolution equation identical in form to that derived by
Hammond (1983) to describe (in the absence of gravity) the Rayleigh instability of
an axisymmetric thin film of liquid coating the inside or outside of a rigid circular
cylinder. In Hammond’s problem the destabilizing effect of the azimuthal curvature
takes the place of gravity and the radius of the cylinder takes the place of the capillary
length. The Rayleigh instability leads to annular ‘collars’ (of length 2πa, where a

is the tube radius) and separating thin ‘lobes’ (of length less than 2πa), which are
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directly analogous to the pendent drops and separating thin regions later found by
Yiantsios & Higgins (1989) in the one-dimensional Rayleigh–Taylor problem.
Hammond (1983) also showed analytically, and numerically on domains of length√

2π� and 3π�, that stationary lobes drain into neighbouring stationary collars
through a quasi-steady neck of the kind identified by Jones & Wilson (1978). As a
result, the thickness in the lobes decrease like t−1/4 and the thickness in the necks
like t−1/2 at large times.

We note that, in practice, such drainage would eventually result in a sufficiently
thin film that other effects such as surface roughness, intermolecular (e.g. van der
Waals) forces or evaporation could become important. The subsequent dynamics
might include rupture and dewetting (e.g. Zhang & Lister 1999; Fetzer et al. 2005)
or the establishment of a nearly uniform ultra-thin film between slowly coarsening
drops (e.g. Glasner & Witelski 2003; Gratton & Witelski 2008). We will assume that
the film thickness is sufficient that the flow can be considered to be driven only by
surface tension and gravity. Evaporation is neglected.

Both Hammond (1983) and Yiantsios & Higgins (1989) comment briefly that
the behaviour on domains of length greater than 4π� may differ from that above
since there is then room for one or more of the collars (drops) to translate in the
interior of the domain. They were unable to investigate this further owing to the
limitations of computational resources and methods at the time. Lister et al. (2006b)
revisited Hammond’s problem and used highly accurate finite-difference simulations,
adaptive in both space and time, to uncover some complicated dynamics on longer
domains. On such domains, a collar can episodically translate back and forth along
the cylinder, on each occasion consuming the lobe ahead and leaving a smaller
daughter lobe behind (figure 1). This motion takes place on several different time
scales: the relatively rapid translation is governed by Landau–Levich equations; the
collision of the translating collar with a neighbouring collar is governed by a new
similarity equation for the neck regions ahead and behind in which the thickness
varies like t−1; and the delay between one episode of translation and the next
is governed via the Landau–Levich equation by a slow peeling process in the
daughter lobe. Asymptotic results for each of the processes of translation, collision
and peeling were obtained and compared with a full numerical solution. Each episode
of translation reduces the thickness of the daughter lobe by a factor ≈0.115, and
successive translations back and forth give rise to a lobe thickness that decays on
average and on very long time scales like t−1/2 instead of the t−1/4 obtained by the
Hammond drainage mechanism. Some of these phenomena were rederived in Glasner
(2007).

Two features of the energetics of this process are worth noting. First, the translation
of a collar is driven by the factor of 0.115 reduction in the film thickness left behind
the collar (through a Landau–Levich-like process): most of the film over which the
collar passes is retained at lower pressure in the collar, thus leading to a decrease
in the interfacial energy. Second, it would be energetically favourable for collars to
coalesce when they collide and for the system to evolve towards a single large collar.
This does not happen because the neck between colliding collars thins like t−1 as
fluid is sucked into the collars, causing the forward motion of the collision to slow
rapidly like t−3/2, until a peeling process in the lobe on the other side of the collar
eventually catches up and triggers a reversal of the motion.

The main purpose of the present paper is to examine how much of the behaviour
found by Hammond (1983), Yiantsios & Higgins (1989) and Lister et al. (2006a, b)
in one horizontal dimension carries over to two horizontal dimensions. In § 2 we
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Figure 1. The evolution of a thin annular film of thickness h on a cylinder of length 5π
taken from Lister et al. (2006b). (a) Time t = 102 (dashed), 103, 104 and 106 (bold); (b)
t = 2.1 × 106 (dashed), 2.18 × 106, 2.2 × 106, 2.22 × 106 and 2.3 × 106 (bold). Between t = 102

and 105 the central collar slides to the left from 2 < z/π < 4 into 1< z/π < 3, consuming the
lobe ahead of it and leaving a smaller daughter lobe (h ∼ 10−2) behind in 3 < z/π < 4. Between
t = 2.1 × 106 and 2.3 × 106, the collar slides back to the right leaving an even smaller daughter
lobe (h ∼ 10−3) in 1< z/π < 2. The episodic sliding motion is halted by collisions with the
collars pinned at the ends of the domain by the boundary conditions and is reinitiated by a
peeling process that cannot be seen on this scale. (c) The reduction in thickness of the lobe
by a factor of about 10 by each sliding episode is shown on a logarithmic scale by profiles at
t = 102 (solid), 105(dotted) and 108 (dashed).

formally define the problem, and show that the two-dimensional analogue of a collar
is an axisymmetric drop of radius ≈3.8317�. In § 3, we study the long-term evolution
on a domain small enough that any drops are constrained to be stationary by the
boundary conditions. We show that drainage of the intervening thin film into the
drops can be described by a generalization of Hammond’s analysis. In § 4 we show
that on a larger domain a single drop can undergo quasi-steady translation over an
otherwise uniform film, leaving a ‘wake’ in which the average thickness is less than
that of the original film. Landau–Levich analyses around the perimeter of the drop
are used together with a solubility criterion to predict the speed and direction of
travel, and the variation in thickness across the wake. In § 5 we show that, in contrast
to the non-coalescence of colliding collars, two drops will coalesce in a head-on
collision. We also present illustrative calculations of off-set collisions of drops, and
of the collision of a drop with a wake, showing how the trajectory of the translating
drop is deflected. These situations have no one-dimensional analogue. We conclude
with discussion of the challenge of observing a translating drop experimentally and
with some open questions.
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Figure 2. Definition sketch. The underside of a horizontal rigid boundary z = 0 is coated by
a thin layer of liquid of viscosity μ, surface tension σ and thickness h(x, y, t), where x and y
are the horizontal coordinates.

2. Problem description
2.1. Governing equation

Consider a thin layer of liquid of density ρ, viscosity μ and thickness h(x, y, t) coating
the underside of a horizontal rigid boundary z = 0 (figure 2). We assume that the film
thickness varies on a horizontal length scale much greater than h so that |∇h| � 1,
where ∇ = (∂/∂x, ∂/∂y) denotes the horizontal gradient operator. It follows that the
interfacial curvature is given by

κ = −∇2h
(
1 + O(|∇h|2)

)
. (2.1)

We assume that both the external pressure p0 and the surface tension σ are uniform.
The flow in the film is then driven by horizontal gradients in the pressure

p = p0 − ρg(h + z) + σκ , (2.2)

which is derived from a vertical hydrostatic balance and the capillary jump across
the interface. There is no slip at z = 0 and no tangential stress at z = −h. We
assume that inertia is negligible and, using |∇h| � 1 again, make the usual lubrication
approximations to obtain

ht +
1

3μ
∇ ·

(
h3∇(ρgh + σ∇2h)

)
= 0. (2.3)

Equation (2.3) also describes the evolution of a thin layer of fluid overlying a
much deeper layer of less dense fluid, or underlying a deep layer of more dense fluid,
provided ρ is replaced by the density difference between the layers and the viscosity
of the deep layer is much less than μ/|∇h| (Yiantsios & Higgins 1989).

By scaling h in (2.3) with a typical initial thickness ĥ, x and y with the capillary
length � = (σ/ρg)1/2, p with σ ĥ/�2 and t with μ�4/(σ ĥ3), we obtain the dimensionless
evolution equation

ht + 1
3
∇ ·

(
h3∇(h + ∇2h)

)
= 0. (2.4)

This paper focuses on the evolution of solutions of (2.4) with two spatial variables x

and y. The numerical calculations described in subsequent sections were performed
on a finite domain x1 � x � x2, y1 � y � y2, subject to the symmetry (no-flux)
boundary conditions

hx = hxxx = 0 (x = x1, x2), hy = hyyy = 0 (y = y1, y2). (2.5)

As noted above, if there is only one spatial variable x, then (2.4) also describes the
dimensionless evolution of a thin annular film of thickness h(x, t) coating the inside
or outside of a cylinder of radius a 	 h in the absence of gravity (Hammond 1983;
Lister et al. 2006b). In this context the second-derivative term in (2.4) arises from
perturbations to the azimuthal curvature rather than gravity, the fourth-derivative
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term arises from perturbations to the axial curvature, and x is made dimensionless
with respect to the radius of the cylinder rather than the capillary length.

2.2. Drop formation, energy and dissipation

It is straightforward to show from (2.4) that a uniform film of thickness h0 is
linearly unstable on an infinite domain to wavevectors k with k = |k| < 1 (e.g. Vrij
1966; Yiantsios & Higgins 1989), reflecting the long-wavelength Rayleigh–Taylor
destabilization by gravity. The growthrate (1/3)h3

0k
2(1 − k2) has a maximum h3

0/12
at k = 2−1/2, reflecting the increase with wavelength in the viscous resistance to the
lubrication flow.

The instability drives the film towards a state of lower energy E, where E is the
sum of the gravitational potential energy and the interfacial energy. By expanding
the relevant interfacial integral to O(ĥ2), consistent with the thin-film approximation
(2.1), we find that

E =
1

2

∫∫
(|∇h|2 − h2) dx dy. (2.6)

Subject to suitable boundary conditions, such as (2.5), periodicity or a uniform far-field
thickness, it can be shown from (2.4) that dE/dt = −Φ , where

Φ =
1

3

∫∫
h3|∇(h + ∇2h)|2 dx dy � 0. (2.7)

is the rate of dissipation in the thin-film approximation.
From (2.4) or (2.7), at each point of an equilibrium shape either h = 0 or ∇P = 0,

where

P = −(h + ∇2h) (2.8)

is the modified pressure. Equilibria thus consist of one or more regions, each of which
has P uniform in its interior and h = 0 on any boundary. There are a wide variety of
such solutions, found by solving (2.8) subject to these conditions.

The equilibrium solution of greatest importance to the rest of the paper, which we
call a ‘drop’, is given by

h = A

(
1 +

J0(r)

JR

)
, (r � R) and h = 0 (r > R), (2.9)

where the amplitude A is a constant, r is the radial coordinate centred on any point
in the x, y plane, J0 is the regular Bessel function of order zero, R ≈ 3.8317 is the
first root of J′

0(R) = 0, and JR = −J0(R) ≈ 0.40276. This solution contacts the plane
tangentially at r = R. A drop is the axisymmetric analogue of the one-dimensional
collar. The pressure in a drop is −A, the volume is V = πR2A and the energy is
E = −πR2A2/2 = −V 2/(2πR2). With the boundary conditions (2.5), (2.9) can also
describe a quarter drop in equilibrium in the corner of the domain or a half drop
on an edge. With a small perturbation, the solution (2.9) for r <R can be matched
asymptotically to a surrounding much thinner film. We shall also use the term drop
more loosely to describe the perturbed solution.

Another constant-pressure solution of (2.8) that contacts the plane tangentially is
the two-dimensional extension of the collar solution into a strip with

h = A(1 + cos z), (|z| � π) and h = 0 (|z| > π), (2.10)

where z is the coordinate perpendicular to any line in the x, y plane. When subject
to the no-flux boundary conditions (2.5), the line must be parallel to one of the axes,
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and (2.10) also describes an equilibrium half strip when the line is one edge of the
domain.

Drops and strips (including the variants at corners and edges) are the only
equilibrium solutions we know that have entirely tangential contact, though we
have not proved that no other solutions exist. There are many solutions that meet the
plane at a non-zero angle, which are the two-dimensional analogues of lobes. Indeed,
given any bounded region in the plane, there is a unique solution to the Helmholtz
problem ∇2h + h = 1 in the region subject to h = 0 on its boundary. Provided h > 0
throughout the region, which implies that ∂h/∂n � 0 on the boundary, this gives
a valid lobe-like equilibrium. As we shall see in § 3, on a sufficiently small domain
the film evolves towards a number of drops surrounded by a much thinner lobe-like
region.

2.3. Choice of numerical method

Lister et al. (2006b) found that the long-term evolution of the one-dimensional
solutions of (2.4) is controlled by very thin regions of the film (necks) that connect
much thicker regions of the film (collars or lobes). Owing to the large contrast in the
values of the mobility coefficient h3, the evolution of the thin necks occurs on a much
longer time scale than that of adjustment of the collars and lobes to their equilibrium
shapes. For large times t , the evolution of the necks is typically self-similar with time
scale O(t), whereas the adjustment time scale of the collars remains O(1) so that they
are in almost static equilibrium.

Any explicit discretization of (2.4) would be crippled by infeasibly small time steps
for stability. A fully implicit method requires iterative solutions of nonlinear equations,
and it is not always clear (see comments below) whether the effective dynamics of
iteration will match the very stiff dynamics of the late-time film evolution. Lister et al.
(2006b) found that it was possible to calculate the long-term evolution accurately and
efficiently in one dimension, by using a semi-implicit method in which the mobility
coefficient h3 was represented explicitly, but the film pressure (which is constant within
the quasi-static collars and lobes) was represented fully implicitly. Thus the collars
and lobes relax to the correct equilibria even if large time steps, proportional to t , are
taken to follow the slow self-similar evolution of the necks.

The semi-implicit method for (2.4) can be written

h(n+1) − h(n) = − 1
3

(
t (n+1) − t (n)

)
∇ ·

(
f

(
h(n)

)
∇

(
∇2h(n+1) + h(n+1)

))
, (2.11)

where h(n) is the film thickness at time tn and f (h) = h3. In one dimension,
spatial discretization of the right-hand side of (2.11) gives an easily solvable
pentadiagonal system for h(n+1). In two dimensions, spatial discretization with a
13-point computational molecule gives rise to a large sparse non-symmetric banded
matrix. In an attempt to preserve the advantages of the one-dimensional method,
we tried evolving (2.11) using a bi-conjugate gradient method with a variety of
preconditioners to obtain a good approximate inversion of the banded matrix.
Unfortunately, as described in more detail in the Appendix, we found that the
algorithm ran into difficulties as the film-thickness variations increased and the
matrix became increasingly ill-conditioned.

Instead, we computed the results that follow using an operator-splitting alternating
direction implicit (ADI) method, adapted from one of the methods proposed by
Witelski & Bowen (2003). In our implementation, the terms that involve only x-
derivatives or only y-derivatives (in particular, hxxxx and hyyyy) are treated by ADI,
while the mixed-derivative terms (in particular, hxxyy) and the mobility coefficient
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are treated explicitly. The details are given in the Appendix. This method allows
time steps of order unity, but cannot maintain the self-similar speed-up because the
operator splitting that separates the x and y directions involves errors of order �t2.
(As an aside, Witelski & Bowen 2003 use Neumann stability analysis to show that
the ADI scheme gives unconditional numerical stability of perturbations to a uniform
film when the second-order destabilizing term is not present. We found that the ADI
scheme was unstable at large �t2 when the film is far from uniform.)

The majority of our calculations were performed on a fixed, evenly spaced
rectangular grid with spacings �x and �y typically about 0.04. For one-dimension,
Lister et al. (2006b) used adaptive grid spacing to resolve the very short and decreasing
length scales of the necks out to times of order 1010. In two-dimensions it is not
possible to do so without losing the advantages of a regular grid. Our simulations
were thus limited by resolution of the decreasing length scales, as well as by time
step, to times of order 106, and both the spatial discretization and the time-stepping
algorithm would need overhauling to do significantly better. The accuracy of the
numerical scheme for the results reported here has been checked by varying the grid
spacing, the time step and, where relevant in § 4, the domain size.

3. Drop formation and drainage on a small domain
3.1. Simple geometric considerations

Consider the evolution of (2.4) on the rectangular domain 0 � x � Lx , 0 � y � Ly

subject to the boundary conditions (2.5) in which x1 = y1 = 0, x2 = Lx and y2 = Ly .
If Lx and Ly are sufficiently small then the solution is constrained by the boundary
conditions to be fairly straightforward. The following geometric considerations are
supported by sample numerical calculations with various initial conditions and values
of Lx and Ly .

If Lx < π and Ly < π then there is no room for an unstable wavelength and the
solution evolves towards a uniform film (provided there is no initial dry patch).

If Lx > π or Ly > π then a uniform film is unstable to a general perturbation,
which then evolves towards a number of equilibrium solutions of the form (2.9) or
(2.10) – drops or strips – separated by much thinner regions. On a small domain
there is only room for a small number of drops or strips, and these are constrained
to form in the corners or along the sides of the domain, where they are pinned
by the boundary conditions. On such a domain the long-term behaviour is largely
determined by the values of Lx and Ly , and only to a lesser extent by the initial
conditions.

If at least one of Lx or Ly is less than R ≈ 3.83 > π and at least one of them
exceeds π then the domain is too narrow to accommodate even a quarter of the drop
solution (2.9), but a uniform film is nevertheless unstable. In this case, the film will
evolve towards strips spanning the domain in one direction, usually the shorter, and
the subsequent dynamics in the perpendicular direction is very similar to that of the
one-dimensional problem. For example, figure 3 shows stages in the evolution of the
film for Lx = 3π, Ly = 1.1π ≈ 3.5 <R and initial condition

h(x, y, 0) = 1 + 0.01 cos(πx/Lx) + 0.1 cos(πy/Ly). (3.1)

This domain is sufficiently large that a uniform film is unstable in both the x and y

directions. The initial condition is such as to excite flow primarily in the y direction
(figure 3a), and there would be room for a half-strip solution of the form A(1+cos y)
in 0 � y � π. However, instability in the x direction causes the film to veer away from
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Figure 3. Evolution from initial condition (3.1) with Lx = 3π, Ly = 1.1π ≈ 3.5 < R. (a)–(c)
Contour plots of h at t = 32, 64 and 1024. (d ) h(x, 0) at t = 1024. Growth of the initial
perturbation in the y direction towards a half-strip (a) is destabilized by the growth of
variations in the x direction (b). The lack of room for a quarter drop in the corners then leads
to the development of an approximately one-dimensional structure with a pinned half-strip at
each end (c,d). The lobe in π <x < 2π is draining into the adjacent half-strips.

a half-strip solution and towards quarter drops in two corners (figure 3b). However,
since there is insufficient room in the y direction for quarter drops, the film makes a
further transition towards an almost one-dimensional structure (figure 3c) in which
flow is in the x direction and a thin central lobe drains into half-strips pinned at
each end (cf. figure 3c of Lister et al. 2006b). If Ly < R and Lx > 4π then there is
also room for a central strip of width 2π to oscillate between the pinned half-strips
of width π by the processes of translation, collision and peeling described in Lister
et al. (2006b).

If R � Lx < 2R and R � Ly < 2R then there is room either for a quarter drop in
one corner of the domain, or for two quarter drops in opposite corners, but no room
for a complete drop or half drop. (Two quarter drops require L2

x + L2
y � 4R2.) It is

also possible for there to be no room for complete or half drops on somewhat larger
domains (e.g. up to L2

x + L2
y = 16R2 for complete drops) if quarter drops already

occupy some or all of the corners. In all these restricted configurations, once quarter
drops have formed in the corners, the subsequent drainage of the intervening thin film
into the quarter drops can be described by an extension of the analysis of Jones &
Wilson (1978) or Hammond (1983). We first present a numerical calculation for a
particular case in § 3.2 and then describe the general theory in § 3.3.

The dynamics of drops for yet larger values of Lx and Ly is discussed in §§ 4 and 5.
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trenches around their edge and the draining lobe-like region in the middle. (d) The
time-dependence of various heights in the domain. The minima along the x and y axes
in the trench (points Y and Z) have h ∼ t−1/2. The heights at the centre of the domain (W)
and at the local maximum at (x, y) ≈ (5.5, 0) (X) both have h ∼ t−1/4 (dashed). (The white
patches in the trench are a graphical artefact.)

3.2. Numerical example of drainage

Our illustrative calculation is the case Lx = 8.4, Ly = 4.85 with initial condition

h(x, y, 0) = 1 + 0.05 cos(πx/Lx) cos(πy/Ly). (3.2)

These values of Lx and Ly were chosen so that quarter drops have room to form in two

diagonally opposite corners and also so that Lx/Ly = 1.7320 ≈
√

3. The calculation
can thus be considered to be simulation of drainage into a periodic hexagonal array
of drops (figure 4a). Such an array has been observed experimentally and is predicted
by weakly nonlinear analysis (Fermigier et al. 1992). The wavelength of the array
here, λ ≈ 9.7, was chosen to be a little larger than that of the most rapidly growing
mode, 2π

√
2 ≈ 8.9, in order to increase the minimum separation λ − 2R between the

drops and reduce the cost of a resolved calculation.
By t = 64 most of the fluid in the film has accumulated into two drops in opposite

corners of the domain (figure 4b). The structure of the solution for longer times
can be seen in a contour plot of log h at t = 220 ≈ 106 (figure 4c). The drops are
surrounded by circular ‘trenches’, where the film is very thin and which separate the
drops from a less thin film in the remaining region between the drops. Figure 4(d)
shows the time-dependence of the film thickness at two points in the region between
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the drops and three points in one of the trenches. At large times these thicknesses
vary like t−1/4 and t−1/2, respectively. These scalings are the same as those found by
Hammond (1983) for the drainage of a lobe through a thin neck into a neighbouring
collar. We infer that the region between the drops is analogous to a lobe, the trench
to a neck and the drop to a collar.

3.3. Theory for drainage

Consider a situation in which quarter drops form in at least one corner of the
rectangular domain 0 � x � Lx , 0 � x � Ly and where there is no room for any
other drops to form. At large times, a narrow trench around each quarter drop
controls the flux into that drop from a slowly draining lobe-like region between the
drops. The film is much thinner in the trench than in the drops or the lobe, which
has several consequences: (i) The volume of fluid in the trench can be neglected in
comparison to that in the drops and the lobe. (ii) Drainage is much slower than the
adjustment times of the drops and the lobe, which are thus in quasi-static equilibrium
and have uniform pressures at leading order. (iii) The solutions for the drops and
the lobe satisfy h = 0 at leading order along the circular arcs where they meet in a
trench.

Each quarter drop thus takes the form (2.9) for 0 � φ � π/2, where (r, φ) are local
polar coordinates centred on the relevant corner. We write the amplitude of drop i as
Ai(t). The lobe occupies a region A that is the rectangular domain minus the regions
occupied by the quarter drops. It is thus bounded partly by the circular arcs r = R

at the edge of the drops and partly by some of the edges of the rectangular domain.
Taking the uniform pressure in the lobe as −P (t) and using (2.8), the leading-order
solution for the film thickness within the lobe is h(x, y, t) = P (t)f (x, y), where f (x, y)
is the unique solution of the Helmholtz problem

∇2f + f = −1 in A, f = 0 at edges of drops, ∂f/∂n = 0 at edges of domain.
(3.3)

The volume of the lobe is V0P (t), where V0 =
∫

A f dx dy, and the slope of the lobe as
it approaches the trenches around each drop is Θi(φ)P (t), where Θi(φ) = ∂f/∂r |r=R+.

From volume conservation

1
4
πR2JR

dAi

dt
=

∫ π/2

0

qi(φ, t) dφ and V0

dP

dt
= −

∑
i

∫ π/2

0

qi(φ, t) dφ, (3.4)

where qi(φ, t) denotes the flux from the draining lobe across each trench into the
adjoining drop. As we shall see, the qi decrease rapidly like t−5/4 so that the Ai tend
to constant values, which depend on the initial distribution of fluid. What remains is
to determine the actual fluxes qi(φ, t) by matching a solution for a trench to the drop
on one side and the lobe on the other.

Because the trenches are narrow, the leading-order flux in the trench is radial,
independent of r across the trench, and given by qi(φ) = −h3hrrr/3. The matching
conditions to the lobe and the drop are h → (r − R)θ as r − R → ∞ and h →
(1/2)Ai(r − R)2 + O(1) as r − R → −∞, where θ = Θi(φ)P (t) is the slope of the lobe
and Ai is the basal curvature of the drop. (The limits r − R → ±∞ are interpreted
in the usual asymptotic sense corresponding to the overlap between inner and outer
solutions.) By setting h = 3qiθ

−3H and r − R = −3qiθ
−4X, we can rescale the

equations at each φ and for each i onto the canonical problem:

H 3H ′′′ = 1, H ∼ −X as X → −∞, H ∼ 1
2
CX2 as X → ∞, (3.5)
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where C = 3qi(φ)Aiθ
−5. As noted by Jones & Wilson (1978) and Hammond (1983),

the problem (3.5) only has a solution for a particular value of C, namely C ≈ 1.2098
(Jensen 1997). Thus

qi(φ, t) = 1
3
Cθ(φ, t)5/Ai . (3.6)

We combine this local analysis of the trench with (3.4) to obtain the drainage
equation

dP

dt
= − 1

4
P 5

(
4C
3V0

∑
i

A−1
i

∫ π/2

0

Θ5
i (φ) dφ

)
. (3.7)

Clearly P (t) = {k(t − t0)}1/4, where k is the term in parentheses in (3.7) and t0 is
a constant of integration. The constant k depends on the shape of A through the
solution of (3.3) and on the amplitudes Ai of the drops.

It follows from (3.7) and the Jones–Wilson solution (3.5) in the trench that the
typical film thickness in the trenches scales like t−1/2, the trench widths and film
thickness in the lobe both scale like t−1/4 and the fluxes qi scale like t−5/4. These
scalings are all in agreement with the numerics in § 3.2.

4. Translation of a drop over a uniform layer
If the domain is larger than those considered in the previous section (e.g.

Lx, Ly > 2
√

2R), then there is room for at least one drop to form in the interior
of the domain where it is not pinned by the boundary conditions. The dynamics are
then more complicated than the drainage into stationary drops described above.

We consider first the simplest case of a single drop on an otherwise uniform infinite
layer. We show that, given an initial perturbation, the drop undergoes self-induced
quasi-steady translation over the uniform layer, grows slowly in amplitude and leaves
a wake where the film thickness is reduced. We illustrate with a numerical calculation,
and then present a theoretical analysis of translation based on the controlling influence
of Landau–Levich regions around the edge of the drop.

4.1. Numerical example of translation

We solved (2.4) numerically subject to the initial conditions

h = f (r̃) + 0.020 + 0.005 sin(πx̃/6) (|x̃| � 3), (4.1a)

h = 0.020 + 0.005 sgn(x̃) (|x̃| � 3). (4.1b)

where x̃ = x − 4.5, r̃2 = x̃2 + y2, and f (r̃) is the solution for a drop of unit height, i.e.
(2.9) with amplitude A = JR/(JR+1) so that f (0) = 1. This prescription gives a drop of
unit height initially centred on (4.5, 0) and sitting on a fluid layer of thickness chosen
to act as a smooth ‘ramp’ that leads to a layer of uniform thickness h+ = 0.025 in
x � 7.5. The calculations were done with 0 � y � 20, but we use the symmetry about
y = 0 implied by the boundary conditions (2.5) to show the solution in −20 � y � 20.

After a short transient, the difference in height across the ramp initiates motion of
the drop in the x direction. By t = 7 × 105 the centre of the drop has travelled well
away from from the ramp to x =25 (figure 5a) and a wake, where the film thickness
is significantly less than h+, extends from the drop back to its starting position.
The central height of the drop, hd(t), has increased to about 1.32 owing to the fluid
removed from the wake.

In order to study indefinite translation with a finite computational domain x1 �
x � x2, we adopted the simple strategy of incrementing both x1 and x2 by 10 (with
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Figure 5. A translating drop. (a) Initial motion triggered by a small step. (b) Quasi-steady
translation. (c) Cross-sections through the wake along the lines marked in (b).

x2 − x1 = 40) whenever the centre of the translating drop reaches x = x2 − 15. The
film thickness in the new region ahead of the drop is set to h+, and the region more
than 15 behind the drop is discarded. This change to the domain has only a slight
effect on the solution near the boundaries and causes negligible disturbance to the
solution near the drop and in the wake.

In figures 5(b) and 5(c), we show the quasi-steady structure of the wake after the
drop has propagated many times its own radius. In the region |y| <R directly behind
the drop, we see that the film thickness varies across the wake, but very little along the
wake, and can thus be approximated as a function h−(y). We note that h−(y) < 0.15h+.
Since the mobility coefficient in (2.4) is h3, the evolution in this wake is extremely slow
and h− is determined by the thickness left behind the trailing edge of the drop. On
either side of the wake there is a capillary ridge of height about 1.2h+, which is shed
from the sides of the drop and spreads slowly in the y direction away from the wake.

After the initial transient, the amplitude increases linearly with distance (not shown)
and the speed c of the drop increases with its amplitude (figure 6a). Integration
across the wake profiles (figure 5c) provides an alternative measure of the fluid
accumulated by the drop. The quantitative results, and those from similar calculations
with h+ = 0.01, are well represented by the equations

c = α(h+hd)
3/2{1 + 2.04(h+/hd)

1/2}, α = 0.00485, (4.2)

dhd/dx = βh+, β = 0.52, (4.3)∫ ∞

0

(h+ − h−) dy = γ h+R, γ = 0.90. (4.4)
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Figure 6. (a) The growth in translation speed c with drop height hd for the numerical
calculation in § 4.1 (solid). After a short transient, there is an almost perfect fit with the form

c = c0h
3/2
d + c1hd (short dashed), where c0 = 1.92 × 10−5 and c1 = 0.62 × 10−5. The theoretical

prediction (4.20) is shown long dashed. (b) Comparison of the profiles across the wake (solid)
with the theoretical prediction (4.13a, dashed).

4.2. Theory for translation

We seek a quasi-steady travelling-wave solution of (2.4) to describe a drop of slowly
varying amplitude A(t) travelling with speed c(t) in the x direction over a uniform
layer of much smaller prescribed thickness h+.

If the drop leaves behind a wake of smaller thickness h−(y) then the volume of the
drop increases at a rate

dV

dt
= c

∫
(h+ − h−) dy or

dV

dx
=

∫
(h+ − h−) dy, (4.5)

where V = πR2A. Hence if δ ≡ (h+/A)1/2 � 1 then the growth of the drop is slow on
the time scale of propagation over its own length, and the solution is quasi-steady in
the frame of the drop.

Let (x, y) or (r, θ) be coordinates centred on the moving drop (so θ = 0 is the
direction of motion). Then

∇ ·
(
h3∇(h + ∇2h)

)
= 3chx + O(δ2ch), (4.6)

where O(δ2ch) terms arise from the fact that the amplitude of the drop is slowly
varying.

In the drop h = O(1) and p = −h − ∇2h is approximately constant. Anticipating
the scaling c = O(δ3), we posit a quasi-steady drop shape

h = A(J0(r)/JR + 1) + B(r, θ) + O(δ3), (4.7)

where B(R, θ) = O(h±) = O(δ2).
Around the drop we expect a narrow ring of size O(δ) where the curvature changes

rapidly in order to match the edge of the drop to the thin films. This matching
region is analogous to those found in the Landau–Levich and Bretherton problems
(Landau & Levich 1942; Bretherton 1961). Except at the sides of the drop (θ = ±π/2),
we expect the radial variations in curvature to be dominant and hence, at leading
order, (4.6) becomes

(h3hrrr )r = (3c cos θ)hr. (4.8)
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By defining rescaled variables

h = h±H±(ξ ), where ξ = (3c cos θ)1/3(r − R)/h±, (4.9)

and integrating (4.8) once, we obtain the Landau–Levich equation

H 3H ′′′ = H − 1. (4.10)

This equation has a unique solution H−(ξ ) with

H− → 1 as ξ → −∞, H− ∼ 1
2
a−ξ 2 + b− as ξ → ∞, (4.11)

where a− = 0.6430 and b− = 2.8996, and a one-parameter set of solutions H+(ξ ; λ)
labelled by λ with

H+ → 1 as ξ → ∞, H+ ∼ 1
2
a+(λ)ξ 2 + b+(λ) as ξ → −∞. (4.12)

We note that h+ is given and h−(θ) is to be found.
Towards the edge of the drop shape (4.7) the radial curvature hrr approaches the

value A. This curvature must match the quadratic terms in the asymptotic behaviour
of H± as ξ → ∓∞. Thus, given c, we can use (4.9) and (4.11b) to predict the rear
profile

h−(θ) = a−A−1(3c cos θ)2/3 . (4.13)

Again given c, we can use (4.9) and (4.12b) to find λ(θ) from

a+(λ) = h+A(3c cos θ)−2/3, (4.14)

and hence also find b+(θ).
Furthermore, matching the constant terms in the asymptotic behaviour of H± to

the drop shape (4.7) determines the vertical offset B(R, θ) at the front and the back
of the drop in terms of the surrounding film thickness:

B−(θ) = h−(θ)b−, B+(θ) = h+b+(λ). (4.15)

At O(δ2), (4.6) suggests that the drop has uniform pressure, and hence that it
satisfies ∇2h + h = const. subject to h ∼ B(θ) + (1/2)A(R − r)2 as r → R. This
Helmholtz problem can be solved by separation of variables, provided the Fourier
series for B(θ) does not include a term proportional to cos θ . (Note that the Helmholtz
solution J1(r) cos θ cannot satisfy an inhomogeneous boundary condition at r = R,
since J1(R) = 0. The corresponding orthogonality to sin θ is guaranteed by symmetry.)
The absence of a term proportional to cos θ provides the solubility criterion∫ π

0

B(θ) cos θ dθ = 0, (4.16)

which determines c as follows.
For convenience, let

C = (3c)2/3/(Ah+) (4.17)

so that (4.13) and (4.14) become h−(θ) = a−C(cos θ)2/3h+ and

a+(λ) = [C(cos θ)2/3]−1. (4.18)

The speed is found from (4.16) by solving

Ca−b−

∫ π/2

0

(cos θ)2/3 cos θ dθ =

∫ π/2

0

b+[λ(θ, C)] cos θ dθ (4.19)
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for C, where λ(θ; C) is given by (4.18).
Numerical solution of (4.18) and (4.19) gives C = 0.2086. Substitution into (4.17)

and (4.13) yields

c = 1
3
(CAh+)3/2 = 0.0318(Ah+)3/2, (4.20)∫ R

−R

h− dy = h+R Ca−

∫ π/2

−π/2

(cos θ)2/3 cos θ dθ = 0.2257h+R . (4.21)

These predictions agree well with the scalings and numerical coefficients from the
numerical simulation. Using hd = A(J −1

R + 1) in (4.20), we predict α = 0.004886 in
(4.2) which compares to the fitted value 0.00485 from the simulation. From (4.21)
we predict γ = 0.8872 in (4.4) which compares to the fitted value 0.90. By mass
conservation we predict β = 2γ (J −1

R + 1)/(πR) = 0.5133 in (4.3) which compares to
the fitted value 0.52.

The speed observed in the simulation (figure 6a) differs by about 20 % from
the asymptotic prediction (4.20) over the range of hd calculated, this difference being
almost entirely accounted for by the 2.04(h+/hd)

1/2 correction in (4.2). This correction
is O(δ), as might be expected from the ratio of the width of the Landau–Levich regions
to the radius of the drop. The profile of h−(y) (−R � y � R) in the calculated wake
(figure 6b) agrees well with the predicted (cos θ)2/3 profile from (4.13) except close to
the edges of the wake, which are shed from the sides of the drop.

At the sides of the drop (θ ≈ ±π/2, cos θ ≈ 0) there are small regions where the
Landau–Levich analysis breaks down and the azimuthal variations are as important
as the radial variations. An adaptation of the analyses of Burgess & Foster (1990)
for a bubble in a Hele-Shaw cell, and of Hodges, Jensen & Rallison (2004) for
a drop sliding down an inclined plane, shows that these regions should subtend
an O[(h+R2/A3)3/10] angle and occupy a lateral width �y = O[R(h+R2/A3)3/5]. If
A = O(1) and h+ = O(δ2), as assumed, then this angle is O(δ3/10) and the width is
O(Rδ3/5), which is a negligible proportion of the whole. It is puzzling that, with these
scalings, the dissipation associated with the side regions should be O(δ2/5) relative
to the dissipation in the Landau–Levich regions (Hodges et al. 2004), whereas the
numerical solutions only show an O(δ) correction to the speed. We do not understand
this discrepancy.

4.3. Growth towards dripping

We conclude our discussion of translation over a uniform layer by noting that the thin-
film theory predicts a finite-time blow up in the amplitude of the drop. Since V ∝ A,
dV/dt ∝ c from (4.5) and c ∝ A3/2 from (4.20), we find that dA/dt ∝ A3/2. Thus

A = A0(1 − t/t∗)
−2, (4.22)

where A0 is the initial amplitude and t∗ is the blow-up time. Inclusion of the constants
in this calculation gives

t∗ = (3πR/γC3/2)h−5/2
+ A

−1/2
0 = 427h

−5/2
+ A

−1/2
0 , (4.23)

which shows the dependence on the film thickness and initial amplitude.
Before blow-up can occur the thin-film approximation of the curvature κ by

∇2h breaks down. The calculation can be continued by modifying the governing
equation (2.4) to include the full curvature. Though lubrication theory is not strictly
valid within the drop when its dimensional amplitude becomes comparable to its
radius, the modified equation predicts the correct quasi-static equilibrium for the
interior of the drop and the propagation speed is set by the thin regions at the edge
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where lubrication theory is valid. The asymptotic analysis of propagation can thus be
modified by matching the Landau–Levich regions to the basal radius and curvature of
a finite-amplitude pendent drop. We conclude that the drop continues to propagate
and increase in volume until, in finite time, the stability limit of a pendent drop is
exceeded and part of the drop drips off the ceiling. We anticipate that the remainder
will re-equilibrate into a smaller drop and then continue to propagate and grow until
it forms another drip. In principle, on an infinite, perfectly uniform film there could
be periodic episodes of propagation and dripping. In practice, however, t∗ may not be
much less than the O(h−3

+ ) time scale for growth of disturbances to the uniform film
and so the main drop would eventually find itself propagating into a region where
smaller drops were already growing.

4.4. Translation over a slowly varying layer

Motivated by the observation that the film ahead of a translating drop may already
have undergone some disturbance, we now consider a drop propagating over a film
of slowly varying thickness h+(x, y, t). By ‘slowly varying’ we mean: first, that the
horizontal variations of h+ are on a length scale much greater than the Landau–
Levich length scale δ of the ring around the drop, which is the case for the natural
linear instability of the film; and second, that the temporal variation occurs on a much
longer time scale than that of translation of the drop, which will be true if h+ � A.
In these circumstances, it is relatively straightforward to generalize the analysis of
uniform translation to that of a drop travelling with speed c(t) at an angle θc(t) to
the x-axis over such a slowly varying film.

Let h+(θ) denote the film thickness just ahead of the drop in θc − (π/2) < θ < θc +
(π/2) and h−(θ) the thickness left in the wake. Let φ = θ − θc denote the angle to
the direction of motion. The Landau–Levich analysis of (4.8)–(4.15) then carries over
with cos φ replacing cos θ throughout. The boundary condition on the Helmholtz
problem for the quasi-static drop shape must have no terms in either cos θ or sin θ .
Hence there are two solubility criteria, which can be written as

A

∫ π/2

−π/2

h+(φ + θc)b+[λ(φ; c, θc)] cosφ dφ = a−b−

∫ π/2

−π/2

(3c cos φ)2/3 cosφ dφ, (4.24)

A

∫ π/2

−π/2

h+(φ + θc)b+[λ(φ; c, θc)] sin φ dφ = 0, (4.25)

where λ(φ; c, θc) is given implicitly by

a+(λ) = Ah+(φ + θc)(3c cosφ)−2/3. (4.26)

In principle, (4.24) and (4.25) determine c and θc. In particular, the factor sinφ

in (4.25) shows that the drop moves in such a way that a certain average thickness
on the left-hand side of the direction of motion is equal to that the right-hand side.
If h+ is slowly varying and (4.24) and (4.25) are satisfied throughout the motion of
the drop then θc should in general vary continuously. Hence we anticipate that one
would need to consider the variation of the conditions (4.24) and (4.25) along the
instantaneous direction of travel in order to determine the rate of change of direction
dθc/dt of a curving trajectory. From this information one could then integrate along
the trajectory. (We have not worked through the details of this calculation.)

Since release of gravitational potential energy is the driving mechanism for
translation, we expect the drop to veer towards regions where the film thickness
is greater. (For example, if h+ varies slowly even on the length scale R of the drop
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Figure 7. Collision of a moving drop with unit initial height with an equal stationary drop
sitting on a film of thickness 0.025. The contours are at values 2i/2 in (a)–(f ). The times are
given by 10−6t = 0.37, 0.57, 0.78, 0.87, 0.96 and 1.07 respectively.

then (4.25) shows that the drop must move in the same direction as the local value of
∇h+.) Sample numerical calculations confirm the tendency of a drop to veer towards
greater film thicknesses, and this simple idea can be used to understand most of the
complicated behaviour during collisions that is described in the following section. We
note that the reduced film thickness in the wake produced by previous motion provides
a strong bias for a drop to continue moving in the same direction once started.

5. Collisions of drops with drops and wakes
Having established that a single drop can translate over an otherwise uniform film,

we now use illustrative numerical simulations to describe the dynamics of collisions
between drops or between a drop and a wake. A drop of unit height was set in motion
towards some sort of ‘target’ using a ramp of similar form to (4.1b). The orientation
of the ramp determines the initial direction of motion, and the initial film thickness
between the ramp and the target was 0.025. As we show below, there are rich dynamics
to explore in such problems. We have not sought detailed asymptotic solutions to
explain all the phenomena seen, and suspect this would be a considerable challenge.

5.1. Head-on collision with a stationary drop

Figure 7 shows a head-on collision between a moving drop and a stationary drop of
equal amplitude. During the period before the collision, a circular trough or ‘moat’
develops around the stationary drop owing to drainage from the surrounding film
into the lower-pressure drop. Weaker concentric circular peaks and troughs form
around the moat. As the moving drop approaches, it speeds up and slows down as it
encounters these peaks and troughs. As it reaches the moat (figure 7a), it slows down
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significantly, and a single U-shaped minimum forms and deepens near the point of
contact between the drops. However, forward motion continues. The minimum splits
and the new minima move sideways away from the point of contact, while the film
thickness near the point of contact starts to increase rapidly, and the drops coalesce
(figure 7b). The rapid forward motion during coalescence leaves a thicker region in
the wake (cf. (4.13)), which subsequently forms a daughter drop of height 0.09 behind
the main coalesced drop of height 2.26 (figure 7c). After coalescence, the main drop
continues its forward motion until, in this simulation, it collides with the boundary
at y = 40 (figure 7d) and coalesces with the mirror image drop that is implied in
y > 40 by the symmetry boundary conditions (2.5). The processes of collision and
coalescence with the image drop are very similar to those with the stationary target
drop.

The most interesting result from this simulation is that coalescence of colliding
drops can and does occur. Colliding collars, governed by the one-dimensional version
of (2.4), do not coalesce because the neck between the collars thins rapidly like t−1

and the forward motion consequently slows like t−3/2 (Lister et al. 2006b). In the
present two-dimensional calculation, while the layer does thin to less than 0.001 near
the point of contact, the drop continues to be propelled forwards, presumably by the
layer-eating mechanism around the rest of its perimeter, and its velocity falls by only
a factor of 10 from the free speed (and not by the much larger factor (0.025/0.001)3/2

that would result in one dimension). Eventually, a fully two-dimensional motion
eliminates the moat between the drops, which coalesce. Given the difference from the
one-dimensional behaviour, it is worth emphasizing that coalescence is not an artefact
of inadequate numerical resolution between the colliding drops: for example, checks
such as halving the grid spacing did not delay coalescence, reduce the minimum
thickness near the point of contact or affect the variations in forward velocity.

5.2. Oblique collisions with stationary drops and wakes

Figure 8 shows a collision between a moving drop and a stationary drop of equal
amplitude, in which the initial path of the moving drop is offset from the centre of
the stationary drop by a distance 0.5R. The approach towards collision (figure 8a,b)
is essentially the same as with a head-on collision. However, as the moat around the
stationary drop deepens locally into a U-shaped trench between the drops, impeding
the forward motion towards coalescence, the moving drop find it easier to move
sideways towards thicker parts of the layer, and the drop ricochets off at a tangent
(figure 8c,d). On reaching the boundary x = 20, the drop coalesces with its mirror
image and, somewhat surprisingly, the combined drop moves back along boundary
towards y = 0.

Figure 9 shows a similar collision, but with initial offset 3R. It might have been
expected that, with this offset, the moving drop would miss the ‘target’. However,
the moving drop is deflected by attraction towards a weak peak concentric with the
moat around the stationary drop (figure 9b), and then undergoes a complex series
of interactions with the stationary drop and with the boundaries (figure 9c–f). The
tangential deflection off the drop (figure 9c) occurs by the same mechanism as that
discussed for offset 0.5R. Note that the moving drop does not coalesce with its image
on collision with the boundary y = 40 (figure 9d), but bounces off and continues on
to coalescence with its image in the boundary x = −20 (figure 9e).

Figure 10 shows collision with a wake-like feature lying at 45◦ across the path
of the moving drop. The wake was created artificially by reducing the initial film
thickness within it by 90 %. During the period before the collision, the edge of the
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Figure 8. Collision with offset 0.5R at 10−6t = 0.37, 0.53, 0.67, 0.93, 1.01 and 1.11 in (a)–(f )
respectively. The drop heights, film thickness and contour values are as in figure 7.
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Figure 9. Collision with offset 3R at 10−6t = 0.38, 0.66, 0.90, 1.09, 1.18 and 1.33 in (a)–(f )
respectively. The drop heights, film thickness and contour values are as in figure 7.

wake smooths off and develops weak marginal ridges and troughs so that it has a
cross-section similar to that of a real wake (figure 5b). The moving drop is deflected
towards the wake by the largest of these peaks (figure 10b), and then sideways,
tangential to the wake, by the impediment provided by the thin film in the wake
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Figure 10. Collision at 45◦ with an artificial wake of thickness 0.0025 in a film of thickness
0.025. The times are 10−6t = 0.38, 0.68, 0.90, 1.09, 1.14 and 1.63 in (a)–(f ) respectively. The
contour values are as in figure 7.

to continued forward motion (figure 10c,d). The retrograde motion after coalescence
(figure 10f ) is again somewhat surprising. Even though the drop starts progressing
into the artificial wake, it leaves an even thinner film behind so that, once established,
the direction of motion is maintained.

5.3. Oblique collisions of moving drops

In § 5.2 we showed that moving drops are deflected by the capillary waves that
surround stationary features, while coalescence usually, but not always, occurs when
a drop collides with its image in a boundary. To investigate this further, we used an
angled ramp to impel a drop towards its image in the boundary x = 20 at various
angles of incidence. For these calculations we also used a similar strategy to that of
§ 4.1 to allow indefinite translation in the y direction.

Figure 11(a) shows the trajectories of the maximum for each of four such drops. At
incident angles to the boundary steeper than about 25◦ (one example shown) the drop
coalesces with its image. Over a range of shallower incident angles (two examples
shown) the drop is deflected by interactions with its image to settle, after a series of
damped oscillations, into motion almost parallel to the boundary at x = 10. At the
shallowest incident angle shown the drop bounces back from the boundary at x = 10,
collides at a slightly greater angle with the boundary at x = −10, and settles into
motion almost parallel to this boundary.

The slight deflections towards and away from the boundary, which can be seen
as the trajectories approach it, can be explained as attractions and repulsions by
the peaks and troughs of the capillary wave field ahead of the image drop. This
wave field reflects the oscillatory nature of the solution H+(ξ ) to the Landau–Levich
equation (4.10), and is shown in figure 11(b) for a single drop. We hypothesize that
the separation between a drop and its image in solutions where they move along a
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Figure 11. (a) Trajectories of the maximum of a moving drop relative to its initial position
on a domain −20 � x � 20 for four initial directions of motion. (The dashed line shows
the continuation of one trajectory shifted back by 50.) The dotted lines are at |x| = 20 − R.
(b) The contour ht = 0 for a single drop shows the capillary wave field generated ahead of the
drop and shed to the side. The amplitude of ht decreases exponentially away from the drop.

boundary together is related to the width of the first capillary wave at the side of
the drop. If this is the case then we conjecture that there may be other solutions,
less stable and harder to find, in which there are several capillary ridges between the
drops.

The three trajectories that settle into motion almost parallel to the boundary, and
others not shown in figure 11(a), have a number of features in common. The point of
closest approach on the first oscillation is slightly less than R from the boundary but
the distance after the oscillations die down is slightly greater than R. As can be seen
in the figure, for a given amplitude of drop A and layer thickness h+, the oscillations
have approximately the same wavelength and damping rate. Presumably, this could
be found through a linear stability calculation about a translating doublet solution
for the drop and its image. After the oscillations have died away (or been subtracted
by data analysis), the remaining distance δx by which the drop exceeds a distance
R from the boundary slowly decreases as the drop propagates along the boundary
while the amplitude of the drop increases. Comparison of the numerical data from
several runs suggests that δx ∝ [h+/A(t)]0.40±0.05. For comparison, the scaling of the
Landau–Levich region is (h+/A)1/2, though we note that this scaling breaks down at
the sides of the drop.

6. Discussion
We have shown in this paper that the dynamics of pendent drops on a thin film

coating the underside of a ceiling depend on the horizontal extent of the film through
the constraints exerted by the boundary conditions at its edge. A small film is stabilized
by surface tension since there is no room for the gravitationally unstable wavelengths.
On a long, narrow rectangular film, the evolution tends towards that of the analogous
one-dimensional problem (Lister et al. 2006a, b) with vanishing variation across the
narrow dimension. On films of moderate horizontal extent, the pendent drops are
pinned by the boundary conditions and the intervening film drains slowly into the
drops. In this case the evolution becomes self-similar, with the same temporal scalings
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as the one-dimensional problem (Hammond 1983), but with azimuthal variations
around the perimeter of the drop and coefficients that depend on the plan-form of
the intervening film. On a film of large horizontal extent, pendent drops can undergo
self-sustained translation, as in one-dimension, driven by accumulation of fluid from
the film into the drop. Colliding drops display complex dynamics and, unlike the
one-dimensionsional analogues, can coalesce.

Experimental observations of translating drops would be of great interest. In the
experiments of Fermigier et al. (1992) and Limat et al. (1992) an array of drops
was allowed to develop from an almost uniform film, and the array was almost
completely pinned either by the packing of drops inward from the boundaries or by
fixed heterogeneities (dust or wires) that triggered the instability. In order to realize
the translating-drop solutions, we suggest that a finite-amplitude drop should be
placed on a very uniform and thin film so that there is time to observe translation
before the film develops its instability. We note that, in units of time μ�4/σh3

+, the
time 2R/c for translation by one diameter is 1600(h+/hd)

3/2 and the exponential
growth time for the layer is 12. Hence one needs hd/h+ to be large. It is also likely
to be necessary to initiate translation in a particular direction, as with the ramp in
§ 4, perhaps by towing the drop a short distance with a pipette. Without an initial
symmetry breaking disturbance, the drop would remain stationary and simply act as
a nucleation point for the film instability and subsequent front propagation.

From a theoretical point of view, many questions revealed by our study remain
to be explored, particularly regarding the rich dynamics of colliding drops and the
trajectories of drops on non-uniform films. Detailed investigation of the criteria for
coalescence, doublet formation and bouncing off during collision in terms of the
amplitudes and impact parameters of the drops is beyond the scope of this paper,
as is the long-term statistics of many-drop interactions. Some of these problems
are reminiscent of the complex dynamics of drops bouncing on Faraday waves
(e.g. Protiere, Bohn & Couder 2008) though the physical systems seem quite different.
Finally, we note that there are many generalizations of thin-film equations (see e.g.
Oron, Davis & Bankoff 1997; Bertozzi & Pugh 1998; King & Bowen 2001; Weidner,
Schwartz & Eres 2007) to include van der Waals forces, mobility coefficients hn with
n �= 3, Marangoni effects, evaporation or slip. Much of the theory developed for these
problems in one dimension could now be re-examined to explore the possibilities for
drop-like dynamics in two dimensions.

It is a pleasure to contribute a paper on capillary-driven thin-film flow to a volume
in honour of Steve Davis. We have benefited greatly from Steve’s many seminal
contributions to this area of study. The challenge of including thermocapillarity in
our problem must, alas, await another occasion. S. J. R. was supported by a summer
studentship from Trinity College, Cambridge.

Appendix. Numerical discretization
Most of our numerical solutions of (2.4) were calculated using an ADI method

proposed by Witelski & Bowen (2003), which we found performed better than a
conjugate-gradient method with a fully implicit pressure discretization. This appendix
gives further details of the two methods.

A.1. ADI method

Witelski & Bowen (2003) review and test a variety of ADI schemes for the solution
of fourth-order nonlinear diffusion equations such as (2.4). For simplicity, we chose
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the non-iterated version of the scheme they denote (pL1) (pseudolinear, first order
in time). This can conveniently be written symbolically as a ‘factorized’ set of
equations

Lxw = − 1
3
�t ∇ ·

[
f (h(n))∇

(
∇2h(n) + h(n)

)]
, (A 1a)

Lyv = w, (A 1b)

h(n+1) = h(n) + v, (A 1c)

which are then solved in sequence to time step by �t from h(n) to h(n+1). Here Lx

and Ly are linear differential operators defined by

Lx · = 1+ 1
3
�t ∂x[f (h(n))∂x(∂xx +1) ·], Ly · = 1+ 1

3
�t ∂y[f (h(n))∂y(∂yy +1) ·], (A 2)

and f (h) = h3. The effect of solving (A 1a–c) is revealed more clearly by combining
the equations to obtain, after some manipulation,

h(n+1) − h(n)

�t/3
= −∂x

(
f (n)∂x

(
∂xxh

(n+1) + h(n+1)
))

− ∂y

(
f (n)∂y

(
∂yyh

(n+1) + h(n+1)
))

− ∂x

(
f (n)∂xyyh

(n)
)

+ ∂y

(
f (n)∂yxxh

(n)
)

+ O(�t2). (A 3)

(The O(�t2) correction arises from the O(�t2) part of LxLy .) Thus the scheme
is similar to (2.11), but with the mixed-derivative terms treated explicitly instead of
implicitly. Witelski & Bowen (2003) note that, with a small modification, (A 1) could
be iterated at each time step, replacing occurrences of h(n) by successive estimates
of h(n+1), to obtain an implementation of a fully implicit backward-Euler scheme.
However, they and we both found that iteration did not noticeably improve the
accuracy or stability of the scheme, and is therefore not worth the extra computational
cost.

Having factored the time evolution into the form (A 1), it is now straightforward to
represent the spatial derivatives in (A 1) and (A 2) in the standard way by centred finite
differences on an evenly spaced rectangular grid. Following the recommendation of
Witelski & Bowen (2003) and Zhornitskaya & Bertozzi (2000), the required midpoint
values f12 between values h1 and h2 on neighbouring grid points were defined by

f12 =
2h2

1h
2
2

h1 + h2

=
h1 − h2

F (h1) − F (h2)
, where F (u) =

∫
du

f (u)
. (A 4)

(We found that sample calculations with the more obvious definitions (h3
1 + h3

2)/2 or
[(h1 + h2)/2]3 gave essentially the same results.)

On discretizing Lx and Ly , (A 1a) and (A 1b) each reduce to a set of linear
pentadiagonal systems, which are easily inverted for w and v. The boundary conditions
(2.5) are implemented by extending the mesh by an extra two grid points around the
whole domain and allocating or enforcing the necessary mirroring values from within
the domain.

The whole procedure offers second-order accuracy in space and first-order accuracy
in time. The grid spacing was typically about 0.04. Time steps were chosen adaptively
such that h did not change by more than about 0.2 % at any point. (The spacing and
time-step control were both varied to check the accuracy of the results.) The scheme
breaks down at very long times owing to a loss of resolution or a loss of stability
as the solution develops very narrow and slowly evolving features, but the results
presented are well before this time.
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A.2. Conjugate gradient method

In an attempt to use larger time steps than the ADI scheme would permit, we tried
the fully implicit treatment (2.11) of the pressure field. To invert the resultant sparse
non-symmetric banded matrix we used a bi-conjugate gradient method, with the
diagonal of the matrix as a preconditioner. In configurations for which a self-similar
structure developed (see § 3) this technique did indeed permit large time steps �t

proportional to t to be taken under the requirement that the largest fractional change
in h should not exceed 0.2 % in any step. Furthermore, the step-controlling points
were in regions of small h rather than large h, exactly as expected and in agreement
with the one-dimensional simulations. The difficulty with the method, however, is that
the sparse matrix is solved iteratively. For an N × N system using exact arithmetic,
convergence is guaranteed in N iterations. We found that starting from the (good)
solution guess given by the ADI method, about N/2 iterations of the algorithm
were still needed, and that this number grew slowly as �t increased (presumably
because the matrix becomes increasingly ill-conditioned) until, owing to a lack of
machine accuracy, the algorithm no longer converged. (On a grid with spacing 0.1,
convergence to a self-similar solution was possible for values of �t up to about
30, which corresponds to a time t of order 104.) Unfortunately, too, it appears to
be the smallest separation of computational nodes for an unevenly spaced grid that
determines the condition number of the matrix and hence the speed of convergence.

We attempted to improve the algorithm by incorporating the ADI technique as
a preconditioner for the conjugate-gradient method. This was unsuccessful for two
reasons. First, when �t is not small the split operator no longer provides a good
approximation to the true matrix. More importantly, this preconditioned matrix
‘spreads’ the error across both thick and thin areas of the film and this leads to
solutions that are no better than using the ADI algorithm itself; the time step is
again restricted to be small compared with unity and is controlled by the thicker
areas of the film.

We concluded that, in the absence of a better preconditioner for the bi-conjugate
gradient method, the ADI method is more robust, and no more expensive overall,
and we have used it in the results presented.
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